

EAR⁺H VISION

Sat-NeRF: Learning Multi-View Satellite Photogrammetry With Transient Objects and Shadow Modeling Using RPC Cameras

Roger Marí, Gabriele Facciolo, Thibaud Ehret

¹Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, 91190, Gif-sur-Yvette, France

Contributions

A NeRF variant robust to the radiometric inconsistencies of multi-date satellite images, like shadows caused by the sun and small transient objects.
Study the advantages of a clever use of satellite RPC camera models to increase the performance of NeRF architectures for satellite images.

RPC refinement and depth supervision

centreborelli.github.io/satnerf

Bundle adjustment is used to refine the RPCs of all training images [4]. Without this preprocessing step, we observe a loss of accuracy in all metrics.

The sparse point cloud used in the BA can be reused for depth supervision:

$$L_{\text{DS}}(\mathcal{R}_{\text{DS}}) = \sum_{\mathbf{r}\in\mathcal{R}_{\text{DS}}} w(\mathbf{r}) \left(d(\mathbf{r}) - \|\mathbf{X}(\mathbf{r}) - \mathbf{o}(\mathbf{r})\|_2\right)^2,$$
(8)

where $\|\mathbf{X}(\mathbf{r}) - \mathbf{o}(\mathbf{r})\|_2$ is the target depth of the BA point $\mathbf{X}(\mathbf{r})$. \mathcal{R}_{DS} is the

Figure 1: RGB renderings and surface models learned with NeRF and Sat-NeRF.

Architecture and fundamentals

Figure 2: Sat-NeRF MLP architecture.

Sat-NeRF is trained using the volume rendering strategy of NeRF [1]. Each ray \mathbf{r} of a batch \mathcal{R} is discretized into a set of points $\mathbf{x}_i = \mathbf{o} + t_i \mathbf{d}$, where $t_i \in [t_{\text{near}}, t_{\text{far}}]$, and \mathbf{o} and \mathbf{d} are the origin and direction vectors. set of rays intersecting BA points. $w(\mathbf{r})$ is a reprojection error aware weight.

Results

► Trained/tested using the IEEE GRSS Data Fusion Contest 2019 benchmark.

	PSNR ↑			SSIM ↑			Altitude MAE [m] \downarrow					
Area index	004	068	214	260	004	068	214	260	004	068	214	260
NeRF	17.93	10.26	15.26	14.95	0.559	0.536	0.736	0.443	3.327	2.591	2.691	3.257
S-NeRF + SC	26.14	24.07	24.93	21.24	0.871	0.891	0.943	0.825	1.472	1.374	2.406	2.299
Sat-NeRF	26.16	24.80	25.54	21.88	0.876	0.903	0.951	0.840	1.416	1.275 🔴	2.125	2.428
Sat-NeRF + SC	26.67	25.07	25.50	21.78	0.884	0.908	0.950	0.842	1.288 •	1.249	2.009	1.864
Sat-NeRF + SC (no BA)	21.55	22.87	24.53	20.96	0.571	0.874	0.942	0.816	1.577	1.392	2.176	1.875
Sat-NeRF + DS	26.43	25.27	25.69	21.94	0.879	0.913	0.952	0.842	1.420	1.298	1.714 •	1.624 •
Sat-NeRF + DS + SC	26.62	25.00	25.66	21.66	0.881	0.909	0.952	0.839	1.366 •	1.277	1.676 •	1.638 •
S2P (10 pairs) [5]									1.370 🔵	1.174 🗕	1.811 🔵	1.640 •

Table 1: Numerical results using the test images (unseen at training time). The best altitude MAE values are given gold • , silver • and bronze • medals.

Dataset description

Area index	004	068	214	260
# train/test	9/2	17/2	21/3	15/2
max alt. [m]	1	30	73	13
min alt. [m]	-24	-27	-29	-30

The rendered color $\mathbf{c}(\mathbf{r})$ and depth $d(\mathbf{r})$ of \mathbf{r} are

 $\mathbf{c}(\mathbf{r}) = \sum_{i=1}^{N} T_i \alpha_i \mathbf{c}_i \qquad d(\mathbf{r}) = \sum_{i=1}^{N} T_i \alpha_i t_i. \qquad (1)$

where \mathbf{c}_i is the color predicted at \mathbf{x}_i . Opacity α_i and transmittance T_i are obtained from the volume density σ_i and $\sigma_j : j < i$ (to handle occlusions).

The Sat-NeRF loss uses a <u>color term</u> L_{RGB} and two auxiliary <u>solar correction</u> L_{RGB} and <u>depth</u> supervision L_{DS} terms, weighted with $\lambda_{\text{SC}}, \lambda_{\text{DS}} \in \mathbb{R}$:

$$L_{\mathsf{RGB}}(\mathcal{R}) + \lambda_{\mathsf{SC}}L_{\mathsf{SC}}(\mathcal{R}_{\mathsf{SC}}) + \lambda_{\mathsf{DS}}L_{\mathsf{DS}}(\mathcal{R}_{\mathsf{DS}})$$

(5)

(6)

Uncertainty weighting for transient objects

Similarly to [2] we let the MLP learn an uncertainty coefficient β that weights the contribution of each point to the color term of the loss.

$$L_{\mathsf{RGB}}(\mathcal{R}) = \sum_{\mathbf{r}\in\mathcal{R}} \frac{\|\mathbf{c}(\mathbf{r}) - \mathbf{c}_{\mathsf{GT}}(\mathbf{r})\|_{2}^{2}}{2\beta'(\mathbf{r})^{2}} + \left(\frac{\log\beta'(\mathbf{r}) + \eta}{2}\right)$$
(3)

where $\beta'(\mathbf{r}) = \beta(\mathbf{r}) + 0.05$ and $\eta = 3$ to prevent negative values. $\beta(\mathbf{r}) = \nabla^N - T \alpha \beta$

$$(\mathbf{r}) = \sum_{i=1}^{N} T_i \alpha_i \beta_i \tag{4}$$

Shadow-aware irradiance model

Color is learned as in [3], using a linear combination of an albedo color \mathbf{c}_{a}

Figure 3: Compared to classic satellite MVS **[5]**, Sat-NeRF surface models provide finer details and sharper structures but exhibit strong local irregularities.

with a shading scalar s and ambient hue \mathbf{a} related to the solar direction $\boldsymbol{\omega}$.

 $\mathbf{c}_i = \mathbf{c}_{\mathsf{a}}(\mathbf{x}) \cdot \big(s(\mathbf{x}, \boldsymbol{\omega}) + (1 - s(\mathbf{x}, \boldsymbol{\omega})) \cdot \mathbf{a}(\boldsymbol{\omega}) \big),$

The solar correction term is used to prevent instabilities in s:

$$L_{\rm SC}(\mathcal{R}_{\rm SC}) = \sum_{\mathbf{r}\in\mathcal{R}_{\rm SC}} \left(\sum_{i=1}^{N_{\rm SC}} (T_i - s_i)^2 + 1 - \sum_{i=1}^{N_{\rm SC}} T_i \alpha_i s_i \right) + \frac{1}{2} \sum_{i=1}^{N_{\rm SC}} T_i \alpha_i s_i + \frac{1}{2} \sum_{i=1}^{N_{\rm SC}} T_i \alpha_i s_i + \frac{1}{2} \sum_{i=1}^{N_{\rm SC}} T_i \alpha_i s_i \right) + \frac{1}{2} \sum_{i=1}^{N_{\rm SC}} T_i \alpha_i s_i + \frac{1}{2} \sum_{i=1}^{N_{\rm SC}} T_i \alpha$$

where the rays in \mathcal{R}_{SC} follow the solar direction $\boldsymbol{\omega}$.

Point sampling using RPC camera models

Given the predefined altitude boundaries $[h_{\max}, h_{\min}]$, the ray **r** intersecting the pixel **p** in image *j* corresponds to the line between the boundary points: $\mathbf{x}_{\text{start}} = \mathcal{L}_j(\mathbf{p}, h_{\max})_{\text{ECEF}}$ $\mathbf{x}_{\text{end}} = \mathcal{L}_j(\mathbf{p}, h_{\min})_{\text{ECEF}}$, (7) where \mathcal{L}_j is the localization function of image *j*. All point coordinates are expressed in the interval [-1, 1] using an offset and scaling normalization. **Figure 4:** The uncertainty coefficient β learned by Sat-NeRF helps improve geometry learning with respect to previous NeRF variants for satellite images [3].

References

- Mildenhall, Ben et al. NeRF: Representing scenes as neural radiance fields for view synthesis. *ECCV*, 2020. doi.org/10.1007/978-3-030-58452-8₂4
 Martin-Brualla, Ricardo et al. NeRF in the wild: Neural radiance fields for unconstrained photo collections. *CVPR*, 2021. doi.org/10.1109/CVPR46437.2021.00713
 Derksen, Dawa et al. Shadow neural radiance fields for multi-view satellite photogrammetry. *CVPR Workshops*, 2021. doi.org/10.1109/CVPRW53098.2021.00126
 Marí, Roger et al. A generic bundle adjustment methodology for indirect RPC model refinement of satellite imagery. *IPOL*, 2021. doi.org/10.5201/ipol.2021.352
- [5] Facciolo, Gabriele et al. Automatic 3D reconstruction from multi-date satellite images. CVPR Workshops, 2017. doi.org/10.1109/CVPRW.2017.198